Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
MAbs ; 15(1): 2211185, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37191233

RESUMEN

The growing need for biologics to be administered subcutaneously and ocularly, coupled with certain indications requiring high doses, has resulted in an increase in drug substance (DS) and drug product (DP) protein concentrations. With this increase, more emphasis must be placed on identifying critical physico-chemical liabilities during drug development, including protein aggregation, precipitation, opalescence, particle formation, and high viscosity. Depending on the molecule, liabilities, and administration route, different formulation strategies can be used to overcome these challenges. However, due to the high material requirements, identifying optimal conditions can be slow, costly, and often prevent therapeutics from moving rapidly into the clinic/market. In order to accelerate and derisk development, new experimental and in-silico methods have emerged that can predict high concentration liabilities. Here, we review the challenges in developing high concentration formulations, the advances that have been made in establishing low mass and high-throughput predictive analytics, and advances in in-silico tools and algorithms aimed at identifying risks and understanding high concentration protein behavior.


Asunto(s)
Desarrollo de Medicamentos , Preparaciones Farmacéuticas/química , Desarrollo de Medicamentos/métodos , Viscosidad
2.
Cell Chem Biol ; 29(4): 586-596.e4, 2022 04 21.
Artículo en Inglés | MEDLINE | ID: mdl-34699747

RESUMEN

Harnessing the immunomodulatory activity of cytokines is a focus of therapies targeting inflammatory disease. The interleukin (IL)-1 superfamily contains pro-inflammatory and anti-inflammatory members that help orchestrate the immune response in adaptive and innate immunity. Of these molecules, IL-37 has robust anti-inflammatory activity across a range of disease models through inhibition of pro-inflammatory signaling cascades downstream of tumor necrosis factor, IL-1, and toll-like receptor pathways. We find that IL-37 is unstable with a poor pharmacokinetic and manufacturing profile. Here, we present the engineering of IL-37 from an unstable cytokine into an anti-inflammatory molecule with an excellent therapeutic likeness. We overcame these shortcomings through site-directed mutagenesis, the addition of a non-native disulfide bond, and the engineering of IL-37 as an Fc-fusion protein. Our results provide a platform for preclinical testing of IL-37 Fc-fusion proteins. The engineering approaches undertaken herein will apply to the conversion of similar potent yet short-acting cytokines into therapeutics.


Asunto(s)
Antiinflamatorios , Citocinas , Citocinas/metabolismo , Inmunidad Innata , Inmunomodulación , Ingeniería de Proteínas
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...